Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Curr Opin Rheumatol ; 34(2): 125-132, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2319704

RESUMEN

PURPOSE OF REVIEW: New insight into altered B cell distribution including newly identified subsets and abnormalities in systemic lupus erythematosus (SLE) as well as their role in immune protection are summarized in this review. RECENT FINDINGS: SLE carries characteristic B cell abnormalities, which offer new insights into B cell differentiation and their disturbances including discoveries of pathogenic B cell subsets and intrinsic B cell abnormalities. A recent study in SLE found that antigen-experienced B cell subsets lacking expression of CD27 and IgD defined by their lack of CXCR5 and CD19low expression are expanded in SLE and represent plasmablasts likely escaping proper selection. In terms of therapeutic targeting with broader coverage than rituximab, second-generation anti-CD20, anti-CD38 and CD19-CART treatment experiences have advanced our understanding recently. However, the key role of qualitative and quantitative B cell requirements in connection with T cells became apparent during SARS-Cov2 infection and vaccination, especially in patients with gradual B cell impairments by rituximab, mycophenolate mofetil and cyclophosphamide. SUMMARY: Identification and characterization relevant B cell subsets together with altered regulatory mechanisms in SLE facilitates new approaches in targeting pathogenic B cells but require consideration of preservation of protection.


Asunto(s)
COVID-19 , Lupus Eritematoso Sistémico , Linfocitos B , Humanos , ARN Viral , SARS-CoV-2
2.
Front Immunol ; 13: 943476, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2005870

RESUMEN

Background: Durable vaccine-mediated immunity relies on the generation of long-lived plasma cells and memory B cells (MBCs), differentiating upon germinal center (GC) reactions. SARS-CoV-2 mRNA vaccination induces a strong GC response in healthy volunteers (HC), but limited data is available about response longevity upon rituximab treatment. Methods: We evaluated humoral and cellular responses upon 3rd vaccination in seven patients with rheumatoid arthritis (RA) who initially mounted anti-spike SARS-CoV-2 IgG antibodies after primary 2x vaccination and got re-exposed to rituximab (RTX) 1-2 months after the second vaccination. Ten patients with RA on other therapies and ten HC represented the control groups. As control for known long-lived induced immunity, we analyzed humoral and cellular tetanus toxoid (TT) immune responses in steady-state. Results: After 3rd vaccination, 5/7 seroconverted RTX patients revealed lower anti-SARS-CoV-2 IgG levels but similar neutralizing capacity compared with HC. Antibody levels after 3rd vaccination correlated with values after 2nd vaccination. Despite significant reduction of circulating total and antigen-specific B cells in RTX re-exposed patients, we observed the induction of IgG+ MBCs upon 3rd vaccination. Notably, only RTX treated patients revealed a high amount of IgA+ MBCs before and IgA+ plasmablasts after 3rd vaccination. IgA+ B cells were not part of the steady state TT+ B cell pool. TNF-secretion and generation of effector memory CD4 spike-specific T cells were significantly boosted upon 3rd vaccination. Summary: On the basis of pre-existing affinity matured MBCs within primary immunisation, RTX re-exposed patients revealed a persistent but atypical GC immune response accompanied by boosted spike-specific memory CD4 T cells upon SARS-CoV-2 recall vaccination.


Asunto(s)
Artritis Reumatoide , COVID-19 , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Centro Germinal , Humanos , Inmunoglobulina A , Inmunoglobulina G , Rituximab , SARS-CoV-2 , Vacunación
3.
Arthritis Rheumatol ; 74(9): 1556-1568, 2022 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1971236

RESUMEN

OBJECTIVE: Altered composition of the B cell compartment in the pathogenesis of systemic lupus erythematosus (SLE) is characterized by expanded plasmablast and IgD-CD27- double-negative B cell populations. Previous studies showed that double-negative B cells represent a heterogeneous subset, and further characterization is needed. METHODS: We analyzed 2 independent cohorts of healthy donors and SLE patients, using a combined approach of flow cytometry (for 16 healthy donors and 28 SLE patients) and mass cytometry (for 18 healthy donors and 24 SLE patients) and targeted RNA-Seq analysis. To compare B cell subset formation during the acute immune response versus that during autoimmune disease, we investigated healthy donors at various time points after receipt of the BNT162b2 messenger RNA COVID-19 vaccine and patients with acute SARS-CoV-2 infection, using flow cytometry. RESULTS: We found that IgD-CD27+ switched and atypical IgD-CD27- memory B cells, the levels of which were increased in SLE patients, represented heterogeneous populations composed of 3 different subsets each. CXCR5+CD19intermediate , CXCR5-CD19high , and CXCR5-CD19low populations were found in the switched memory and double-negative compartments, suggesting the relatedness of IgD-CD27+ and IgD-CD27- B cells. We characterized a hitherto unknown and antigen-experienced CXCR5-CD19low subset that was enhanced in SLE patients, had a plasmablast phenotype with diminished B cell receptor responsiveness, and expressed CD38, CD95, CD71, PRDM1, XBP1, and IRF4. Levels of CXCR5-CD19low subsets were increased and correlated with plasmablast frequencies in SLE patients and in healthy donors who received BNT162b2, suggesting their interrelationship and contribution to plasmacytosis. The detection of CXCR5-CD19low B cells among both CD27+ and CD27- populations calls into question the role of CD27 as a reliable marker of B cell differentiation. CONCLUSION: Our data suggest that CXCR5-CD19low B cells are precursors of plasmablasts. Thus, cotargeting this subset may have therapeutic value in SLE.


Asunto(s)
Subgrupos de Linfocitos B , COVID-19 , Lupus Eritematoso Sistémico , Antígenos CD19/genética , Antígenos CD19/metabolismo , Subgrupos de Linfocitos B/metabolismo , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina D , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , Fenotipo , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , SARS-CoV-2
4.
Front Immunol ; 13: 822885, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1834400

RESUMEN

Background: Vaccination is considered as most efficient strategy in controlling SARS-CoV-2 pandemic spread. Nevertheless, patients with autoimmune inflammatory rheumatic diseases receiving rituximab (RTX) are at increased risk to fail humoral and cellular responses upon vaccination. The ability to predict vaccination responses is essential to guide adequate safety and optimal protection in these patients. Methods: B- and T- cell data before vaccination were evaluated for characteristics predicting vaccine responses in altogether 15 patients with autoimmune inflammatory rheumatic diseases receiving RTX. Eleven patients with rheumatoid arthritis (RA) on other therapies, 11 kidney transplant recipients (KTR) on regular immunosuppression and 15 healthy controls (HC) served as controls. A multidimensional analysis of B cell subsets via UMAP algorithm and a correlation matrix were performed in order to identify predictive markers of response in patients under RTX therapy. Results: Significant differences regarding absolute B cell counts and specific subset distribution pattern between the groups were identified at baseline. In this context, the majority of B cells from vaccination responders of the RTX group (RTX IgG+) were naïve and transitional B cells, whereas vaccination non-responders (RTX IgG-) carried preferentially plasmablasts and double negative (CD27-IgD-) B cells. Moreover, there was a positive correlation between neutralizing antibodies and B cells expressing HLA-DR and CXCR5 as well as an inverse correlation with CD95 expression and CD21low expression by B cells among vaccination responders. Summary: Substantial repopulation of the naïve B cell compartment after RTX therapy appeared to be essential for an adequate vaccination response, which seem to require the additional capability of antigen presentation and germinal center formation. Moreover, expression of exhaustion markers represent negative predictors of vaccination responses.


Asunto(s)
Artritis Reumatoide , COVID-19 , Humanos , Inmunoglobulina G , Rituximab/uso terapéutico , SARS-CoV-2 , Vacunación/métodos
5.
Arthritis Rheumatol ; 74(6): 934-947, 2022 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1589171

RESUMEN

OBJECTIVE: Patients with autoimmune inflammatory rheumatic diseases receiving rituximab (RTX) therapy are at higher risk of poor COVID-19 outcomes and show substantially impaired humoral immune response to anti-SARS-CoV-2 vaccine. However, the complex relationship between antigen-specific B cells and T cells and the level of B cell repopulation necessary to achieve anti-vaccine responses remain largely unknown. METHODS: Antibody responses to SARS-CoV-2 vaccines and induction of antigen-specific B and CD4/CD8 T cell subsets were studied in 19 patients with rheumatoid arthritis (RA) or antineutrophil cytoplasmic antibody-associated vasculitis receiving RTX, 12 patients with RA receiving other therapies, and 30 healthy controls after SARS-CoV-2 vaccination with either messenger RNA or vector-based vaccines. RESULTS: A minimum of 10 B cells per microliter (0.4% of lymphocytes) in the peripheral circulation appeared to be required for RTX-treated patients to mount seroconversion to anti-S1 IgG upon SARS-CoV-2 vaccination. RTX-treated patients who lacked IgG seroconversion showed reduced receptor-binding domain-positive B cells (P = 0.0005), a lower frequency of Tfh-like cells (P = 0.0481), as well as fewer activated CD4 (P = 0.0036) and CD8 T cells (P = 0.0308) compared to RTX-treated patients who achieved IgG seroconversion. Functionally relevant B cell depletion resulted in impaired interferon-γ secretion by spike-specific CD4 T cells (P = 0.0112, r = 0.5342). In contrast, antigen-specific CD8 T cells were reduced in both RA patients and RTX-treated patients, independently of IgG formation. CONCLUSION: In RTX-treated patients, a minimum of 10 B cells per microliter in the peripheral circulation is a candidate biomarker for a high likelihood of an appropriate cellular and humoral response after SARS-CoV-2 vaccination. Mechanistically, the data emphasize the crucial role of costimulatory B cell functions for the proper induction of CD4 responses propagating vaccine-specific B cell and plasma cell differentiation.


Asunto(s)
Artritis Reumatoide , COVID-19 , Anticuerpos Antivirales , Artritis Reumatoide/tratamiento farmacológico , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Recuento de Células , Humanos , Inmunidad Humoral , Inmunoglobulina G , Rituximab/uso terapéutico , SARS-CoV-2 , Vacunación/métodos
6.
Eur J Immunol ; 52(1): 138-148, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1479399

RESUMEN

The interferon pathway, a key antiviral defense mechanism, is being considered as a therapeutic target in COVID-19. Both, substitution of interferon and JAK/STAT inhibition to limit cytokine storms have been proposed. However, little is known about possible abnormalities in STAT signaling in immune cells during SARS-CoV-2 infection. We investigated downstream targets of interferon signaling, including STAT1, STAT2, pSTAT1 and 2, and IRF1, 7 and 9 by flow cytometry in 30 patients with COVID-19, 17 with mild, and 13 with severe infection. We report upregulation of STAT1 and IRF9 in mild and severe COVID-19 cases, which correlated with the IFN-signature assessed by Siglec-1 (CD169) expression on peripheral monocytes. Interestingly, Siglec-1 and STAT1 in CD14+ monocytes and plasmablasts showed lower expression among severe cases compared to mild cases. Contrary to the baseline STAT1 expression, the phosphorylation of STAT1 was enhanced in severe COVID-19 cases, indicating a dysbalanced JAK/STAT signaling that fails to induce transcription of interferon stimulated response elements (ISRE). This abnormality persisted after IFN-α and IFN-γ stimulation of PBMCs from patients with severe COVID-19. Data suggest impaired STAT1 transcriptional upregulation among severely infected patients may represent a potential predictive biomarker and would allow stratification of patients for certain interferon-pathway targeted treatments.


Asunto(s)
COVID-19/inmunología , Monocitos/inmunología , SARS-CoV-2/inmunología , Factor de Transcripción STAT1/inmunología , Transducción de Señal/inmunología , Regulación hacia Arriba/inmunología , Adulto , Anciano , Femenino , Humanos , Factores Reguladores del Interferón/inmunología , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Fosforilación/inmunología
7.
Sci Immunol ; 6(60)2021 06 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1369380

RESUMEN

Patients with kidney failure are at increased risk for SARS-CoV-2 infection making effective vaccinations a critical need. It is not known how well mRNA vaccines induce B and plasma cell responses in dialysis patients (DP) or kidney transplant recipients (KTR) compared to healthy controls (HC). We studied humoral and B cell responses of 35 HC, 44 DP and 40 KTR. Markedly impaired anti-BNT162b2 responses were identified among KTR and DP compared to HC. In DP, the response was delayed (3-4 weeks after boost) and reduced with anti-S1 IgG and IgA positivity in 70.5% and 68.2%, respectively. In contrast, KTR did not develop IgG responses except one patient who had a prior unrecognized infection and developed anti-S1 IgG. The majority of antigen-specific B cells (RBD+) were identified in the plasmablast or post-switch memory B cell compartments in HC, whereas RBD+ B cells were enriched among pre-switch and naïve B cells from DP and KTR. The frequency and absolute number of antigen-specific circulating plasmablasts in the cohort correlated with the Ig response, a characteristic not reported for other vaccinations. In conclusion, these data indicated that immunosuppression resulted in impaired protective immunity after mRNA vaccination, including Ig induction with corresponding generation of plasmablasts and memory B cells. Thus, there is an urgent need to improve vaccination protocols in patients after kidney transplantation or on chronic dialysis.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Huésped Inmunocomprometido , Trasplante de Riñón , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/inmunología , Vacuna BNT162 , COVID-19/inmunología , Femenino , Humanos , Inmunidad Humoral/efectos de los fármacos , Inmunidad Humoral/inmunología , Masculino , Persona de Mediana Edad , Diálisis Renal , SARS-CoV-2 , Receptores de Trasplantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA